3.1416 \(\int \sqrt {a+b \cos (c+d x)} (A+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)} \, dx\)

Optimal. Leaf size=515 \[ \frac {\sqrt {a+b} \left (a^2 C-4 b^2 (2 A+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (C (a+2 b)+8 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b d \sqrt {\sec (c+d x)}}+\frac {a C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{4 b d}+\frac {C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d \sqrt {\sec (c+d x)}}-\frac {C (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b d \sqrt {\sec (c+d x)}} \]

[Out]

1/2*C*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)+1/4*a*C*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c
)^(1/2)/b/d-1/4*(a-b)*C*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b)
)^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*
x+c)^(1/2)+1/4*(8*A*b+(a+2*b)*C)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a
-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b
/d/sec(d*x+c)^(1/2)+1/4*(a^2*C-4*b^2*(2*A+C))*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x
+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(
d*x+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.24, antiderivative size = 515, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {4221, 3050, 3061, 3053, 2809, 2998, 2816, 2994} \[ \frac {\sqrt {a+b} \left (a^2 C-4 b^2 (2 A+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (C (a+2 b)+8 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b d \sqrt {\sec (c+d x)}}+\frac {a C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)}}{4 b d}+\frac {C \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d \sqrt {\sec (c+d x)}}-\frac {C (a-b) \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 b d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]],x]

[Out]

-((a - b)*Sqrt[a + b]*C*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]
*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a
 - b)])/(4*b*d*Sqrt[Sec[c + d*x]]) + (Sqrt[a + b]*(8*A*b + (a + 2*b)*C)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*Ellipt
icF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c
+ d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(4*b*d*Sqrt[Sec[c + d*x]]) + (Sqrt[a + b]*(a^2*C - 4*b
^2*(2*A + C))*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a +
b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/
(a - b)])/(4*b^2*d*Sqrt[Sec[c + d*x]]) + (C*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*d*Sqrt[Sec[c + d*x]]) +
(a*C*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*b*d)

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3050

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
 + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n
*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*
x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0
] && NeQ[c, 0])))

Rule 3053

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3061

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> -Simp[(C*Cos[e + f*x]*Sqrt[c + d*Sin[e
+ f*x]])/(d*f*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[1/(2*d), Int[(1*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d
*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + f*x]^2, x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c
+ d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
&& NeQ[c^2 - d^2, 0]

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a (4 A+C)+b (2 A+C) \cos (c+d x)+\frac {1}{2} a C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {a C \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a^2 C}{2}+a b (4 A+C) \cos (c+d x)-\frac {1}{2} \left (a^2 C-4 b^2 (2 A+C)\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{4 b}\\ &=\frac {C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {a C \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a^2 C}{2}+a b (4 A+C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{4 b}+\frac {\left (\left (-a^2 C+4 b^2 (2 A+C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 b}\\ &=\frac {\sqrt {a+b} \left (a^2 C-4 b^2 (2 A+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {a C \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}-\frac {\left (a^2 C \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b}+\frac {\left (a (8 A b+(a+2 b) C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{8 b}\\ &=-\frac {(a-b) \sqrt {a+b} C \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (8 A b+(a+2 b) C) \sqrt {\cos (c+d x)} \csc (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} \left (a^2 C-4 b^2 (2 A+C)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {C \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {a C \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 18.80, size = 1391, normalized size = 2.70 \[ \text {result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]],x]

[Out]

(C*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[2*(c + d*x)])/(4*d) + (-(a^2*Sqrt[(a - b)/(a + b)]*C*Tan[(c
 + d*x)/2]) - a*b*Sqrt[(a - b)/(a + b)]*C*Tan[(c + d*x)/2] + 2*a*b*Sqrt[(a - b)/(a + b)]*C*Tan[(c + d*x)/2]^3
+ a^2*Sqrt[(a - b)/(a + b)]*C*Tan[(c + d*x)/2]^5 - a*b*Sqrt[(a - b)/(a + b)]*C*Tan[(c + d*x)/2]^5 + (16*I)*A*b
^2*EllipticPi[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 -
 Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - (2*I)*a^2*C*Ellipti
cPi[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c +
d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (8*I)*b^2*C*EllipticPi[(a + b
)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c + d*x)/2]^2]
*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (16*I)*A*b^2*EllipticPi[(a + b)/(a - b)
, I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c +
d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - (2*I)*a^2*C*EllipticPi[(a + b
)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*Sqrt[1 -
Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (8*I)*b^2*C*Elliptic
Pi[(a + b)/(a - b), I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Tan[(c + d*x)/2]^2*
Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - I*a*(a - b)
*C*EllipticE[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[1 - Tan[(c + d*x)/2]^
2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + (2*I)*(a - b
)*(4*A*b + (a + 2*b)*C)*EllipticF[I*ArcSinh[Sqrt[(a - b)/(a + b)]*Tan[(c + d*x)/2]], -((a + b)/(a - b))]*Sqrt[
1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a
 + b)])/(4*b*Sqrt[(a - b)/(a + b)]*d*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan[(c + d*x)/2]^2)*(1 + Tan[(c
 + d*x)/2]^2)^(3/2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^2)])

________________________________________________________________________________________

fricas [F]  time = 6.99, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 0.55, size = 1818, normalized size = 3.53 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x)

[Out]

-1/4/d*(1/cos(d*x+c))^(1/2)/(a+b*cos(d*x+c))^(1/2)*(C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+2
*C*cos(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+
c)*a*b-2*C*cos(d*x+c)*a*b-8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b^2+16*A*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(
a+b))^(1/2))*sin(d*x+c)*b^2-2*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2
)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+8*C*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^
(1/2))*b^2*sin(d*x+c)-4*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Elli
pticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+
b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*sin(d
*x+c)+3*C*cos(d*x+c)^3*a*b-C*cos(d*x+c)^2*a*b+8*A*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*s
in(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b-2*b^2*C*cos(d*x+
c)^2+2*C*cos(d*x+c)^4*b^2+C*cos(d*x+c)^2*a^2-C*cos(d*x+c)*a^2-8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2+
16*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c)
)/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b^2-2*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(
a+b))^(1/2))*a^2+8*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*b^2-4*C*sin(d*x+c)*cos(d*x+c)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+
c),(-(a-b)/(a+b))^(1/2))*b^2+C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+co
s(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+2*C*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b)
)^(1/2))*a*b*sin(d*x+c)+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Elli
pticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*sin(d*x+c))/sin(d*x+c)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+b\,\cos \left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2),x)

[Out]

int((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*(a+b*cos(d*x+c))**(1/2)*sec(d*x+c)**(1/2),x)

[Out]

Integral((A + C*cos(c + d*x)**2)*sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x)), x)

________________________________________________________________________________________